Implementation of empirical dispersion corrections to density functional theory for periodic systems
نویسندگان
چکیده
A recently developed empirical dispersion correction (Grimme et al., J. Chem. Phys. 2010, 132, 154104) to standard density functional theory (DFT-D3) is implemented in the plane-wave program package VASP. The DFT-D3 implementation is compared with an implementation of the earlier DFT-D2 version (Grimme, J. Comput. Chem. 2004, 25, 1463; Grimme, J. Comput. Chem. 2006, 27, 1787). Summation of empirical pair potential terms is performed over all atom pairs in the reference cell and over atoms in shells of neighboring cells until convergence of the dispersion energy is obtained. For DFT-D3, the definition of coordination numbers has to be modified with respect to the molecular version to ensure convergence. The effect of three-center terms as implemented in the original molecular DFT-D3 version is investigated. The empirical parameters are taken from the original DFT-D3 version where they had been optimized for a reference set of small molecules. As the coordination numbers of atoms in bulk and surfaces are much larger than in the reference compounds, this effect has to be discussed. The results of test calculations for bulk properties of metals, metal oxides, benzene, and graphite indicate that the original parameters are also suitable for solid-state systems. In particular, the interlayer distance in bulk graphite and lattice constants of molecular crystals is considerably improved over standard functionals. With the molecular standard parameters (Grimme et al., J. Chem. Phys. 2010, 132, 154104; Grimme, J. Comput. Chem. 2006, 27, 1787) a slight overbinding is observed for ionic oxides where dispersion should not contribute to the bond. For simple adsorbate systems, such as Xe atoms and benzene on Ag(111), the DFT-D implementations reproduce experimental results with a similar accuracy as more sophisticated approaches based on perturbation theory (Rohlfing and Bredow, Phys. Rev. Lett. 2008, 101, 266106).
منابع مشابه
Local response dispersion method in periodic systems: Implementation in the package based on a plane-wave basis set
A number of dispersion correction methods have been developed to make density functional theory (DFT) applicable to noncovalent interactions. Our group has proposed and extended the local response dispersion (LRD) method, which evaluates density-dependent dispersion coefficients using the result of DFT calculation. The LRD method was implemented in the program based on Gaussian basis functions....
متن کاملPlane-wave Pseuclopotential Density Functional Theory periodic Slab Calculations of NO Adsorption on Co(111) Surface
Plane-wave pseudopotential Density Functional Theory (OFT) periodic slab calculations were performed usingthe giteralized gradient approximation (GHA) to investigate the adsorption of nitric oxide(NO) on the (I II)surface of Cu. Copper rface was stimulated using th P 'odic Slab Method consisting of Five atomic Layers.Four different adsorption saes (Atop. Bridge, RCP Hollow, and FCC Hollow) were...
متن کاملDispersive interactions in water bilayers at metallic surfaces: A comparison of the PBE and RPBE functional including semiempirical dispersion corrections
The accuracy and reliability of the density functional theory (DFT)-D approach to account for dispersion effects in first-principles studies of water-metal interfaces has been addressed by studying several water-metal systems. In addition to performing periodic DFT calculations for semi-infinite substrates using the popular PBE and RPBE functionals, the water dimer and water-metal atom systems ...
متن کاملLong-range corrected hybrid density functionals with damped atom-atom dispersion corrections.
We report re-optimization of a recently proposed long-range corrected (LC) hybrid density functional [J.-D. Chai and M. Head-Gordon, J. Chem. Phys., 2008, 128, 084106] to include empirical atom-atom dispersion corrections. The resulting functional, omegaB97X-D yields satisfactory accuracy for thermochemistry, kinetics, and non-covalent interactions. Tests show that for non-covalent systems, ome...
متن کاملDispersion Correction Derived from First Principles for Density Functional Theory and Hartreeâ‹TMFock Theory
The modeling of dispersion interactions in density functional theory (DFT) is commonly performed using an energy correction that involves empirically fitted parameters for all atom pairs of the system investigated. In this study, the first-principles-derived dispersion energy from the effective fragment potential (EFP) method is implemented for the density functional theory (DFT-D(EFP)) and Har...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of computational chemistry
دوره 33 25 شماره
صفحات -
تاریخ انتشار 2012